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Abstract—This paper is focused on using plasma as a substitute
for metal in a frequency selective surface (“FSS”). FSSs have been
used for filtering electromagnetic waves. Each FSS layer has to
be modeled using numerical methods, and the layers are stacked
in such a way to create the desired filtering. Genetic algorithms
are used to determine the stacking needed for the desired filtering.
This is a complicated and numerically expensive process. We de-
veloped a method to replace metal in an FSS with plasma elements.
Our plasma FSSs can be tuned to a desired filtering by varying
the density in the plasma elements. This could save much of the
routine analysis involved in the standard analysis of the conven-
tional FSS structures. The user simply tunes the plasma to get the
desired filtering. Plasma elements offer the possibility of improved
shielding along with reconfigurability and stealth. Plasma FSS can
be made transparent by turning the plasma OFF. This extends our
previous scientific achievements in the development of the plasma
antenna.

Index Terms—Active antennas, antennas, plasma antennas,
plasma devices.

I. INTRODUCTION

A S THE DENSITY of the plasma is increased, the plasma
skin depth becomes smaller and smaller until the elements

behave as metallic elements, and we create filtering similar
to frequency selective surface (FSS) with metallic elements.
Up until the metallic mode for the plasma, our theory and
experiments showed that the plasma FSS had a continuous
change in filtering. We developed a basic mathematical model
for a plasma FSS by modeling the plasma elements as half-
wavelength and full-wavelength dipole elements in a periodic
array on a dielectric substrate. The theoretical model with
numerical predictions predicted the results in good agreement
with our experiments on the plasma FSS. Theoretically, we used
Flouquets theorem to connect the elements. We determined the
transmission and reflection characteristics of the plasma FSS
as a function of plasma density. We utilized frequencies from
around 900 MHz to 12 GHz with a plasma density around
2 GHz. We pulsed the plasma tubes to continuously vary the
plasma density and observed the tunability of the reflection and
transmission of electromagnetic waves. As the plasma density
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decays, the amount of transmitted electromagnetic energy in-
creased as expected. However, at the electromagnetic signals
at frequencies well above the plasma frequency, the plasma
FSS was transparent. We also rotated the polarization of the
transmitting antenna by 90◦ and produced a similar, but reduced
effect.

We modeled an array of plasma FSSs. Similarly, we made
the plasma FSS in the laboratory. Our theory and experiment
were in close agreement. The plasma FSS is unique and new to
the field of electromagnetic filtering. Others have developed the
FSS filters using metal and dielectrics, but we are the first to use
the plasma and the reconfigurability that it offers. The potential
payoff for this technology is high, and the risk is moderate.
It is moderate since we have developed plasma antennas with
transmitters, but the plasma FSS is in some ways easier to
develop since they do not require transmitters.

The plasma FSS can shield antennas, military electronics and
radar systems in a tunable way. If no shielding is needed, turn-
ing the plasmas OFF causes the shield to be invisible. Plasma
FSS allows users to filter out any undesirable radiation, but at
the same time enabling the operations outside that band. The
potential for technology transfer is significant since the plasma
FSS can be tuned to filter out the unwanted radiation from com-
mercial products or tuned to filter electromagnetic emissions to
meet the FCC electromagnetic compatibility requirements.

II. THEORETICAL CALCULATIONS AND

NUMERICAL RESULTS

A. Model Definition

We consider an FSS dipole array as shown in Fig. 1. The
structure consists of a periodic array of vertically aligned
scattering elements. In traditional FSS structures, the scattering
elements would be made of some material possessing a good
electrical conductivity (and, thus, high reflectivity).

Fig. 1 shows the schematic representation of an FSS dipole
array. This sketch illustrates a finite section of an FSS dipole.
The array elements are the vertically aligned rectangular re-
gions. For convenience of analysis, the array is assumed to
extend infinitely in the plane.

For a plasma FSS structure, we imagine a scattering element
to consist of gaseous plasma contained in a tube. The purpose
of the present investigation is to determine the electromagnetic
scattering properties of the array as a function of the reflectivity
of the plasma elements. The horizontal lines on each scattering
element, as shown in Fig. 1, indicate the way in which the
scattering elements are divided into segments for the purpose
of defining the current modes as will be discussed shortly.
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Fig. 1. Schematic representation of an FSS dipole array. This sketch illustrates
a finite section of an FSS dipole array. The array elements are the vertically
aligned rectangular regions. For convenience of analysis, the array is assumed
to extend infinitely in the plane.

B. Method of Calculation

The response (reflection and transmission) of the plasma
FSS is calculated in two stages. 1) We begin by calculating
the response for a perfectly conducting structure. 2) Then, we
scale the reflectivity by a function that depends on the incident
frequency and the plasma frequency so as to account for the
scattering properties of the plasma. Details of these two steps
will now be presented.

III. PERIODIC MOMENT METHOD

In the first stage of calculation, we use the periodic moment
method as described in the book by Munk [1]. The elements
are approximated as thin flat wires. The scattered electric field
produced by an incident plane wave of a single frequency is
given by

E(R) = − IA
Z

2DxDy

×
∞∑

k=−∞

∞∑
n=−∞

e−jβR̄•r̂±

ry

× [
(⊥n̂±)(⊥P ) + (‖n̂±)(‖P )

]
. (1)

The quantities in this equation are defined as follows. The
quantity IA is the current induced in a single element by the
incident plane wave (see Munk [1, p. 106]), Z is the impedance
of the medium which we take to be free space (Z = 377 Ω), R
is the position vector of the observation point, and the scattering
vector is defined by

r̂± = x̂rx ± ŷry + ẑrz (2)

with

rx = sx + k
λ

Dx
rz = sz + n

λ

Dz
(3)

and

ry =

√
1 −

(
sx + k

λ

Dx

)2

−
(
sz + n

λ

Dz

)2

. (4)

In these equations, sx and sz are the components of the unit
vector specifying the direction of the incident plane wave. We
assume that the array lies in the x−z plane, with repeat dis-
tances Dx and Dz and the directions ±ŷ, indicate the forward
and back scattering directions, respectively. Note that for suffi-
ciently high values of the integers n and k, the scattering vector
component ry becomes imaginary corresponding to evanescent
modes.

The remaining quantities (in the square brackets of the ex-
pression for the scattered field) are related to the way in which
the incident electric field generates a voltage in an array element
as is described in detail in Munk’s book [1, pp. 95–100]. The
voltage induced in a scattering element by the incident field is
given by

V (R) = E(R) • p̂P (5)

where E(R) is the electric field vector of the incident plane
wave, p̂ is a unit vector describing the orientation of the scat-
tering element, and P is the pattern function for the scattering
element and is defined by

P =
1

It(R)

∫
Element

It(l)e−jβlp̂•ŝdl (6)

where It(l) is the current distribution on the element located at
R, It(R) is the current at the terminals of the scattering element
(e.g., at the center of a dipole antenna), ŝ is the unit vector
denoting the plane wave incident direction, and β = 2π/λ is
the wavenumber. The unit vectors ⊥n̂ and ‖n̂, which describe
the electric field polarization, are defined by

⊥n̂ =
−x̂rz + ẑrx√

r2
x + r2

z

(7)

and

‖n̂=⊥n̂× r̂=
1√

r2
x + r2

z

[−x̂rxry + ŷ
(
r2
x + r2

z

) − ẑryrz

]
.

(8)

The quantities ⊥P and ‖P are given by multiplying the pattern
function by the appropriate direction cosine: ⊥P = p̂ • ⊥n̂P
and ‖P = p̂ • ‖n̂P . The effective terminal current IA, which
enters the equation for the scattered electric field, is obtained
from the induced voltage and the impedance as

IA =
V

ZA + ZL
(9)

where ZL is the self-impedance of the scattering element and
ZA is the impedance of the array (see [2, eq. 4.69]).

As in all moment methods, some approximation must be
made regarding the detailed current distribution on the scat-
tering elements. In order to calculate the pattern function, we
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assume the current distribution to be a superposition of current
modes. The lowest order mode is taken to be a sinusoidal
distribution of the form:

I0(z) = cos(πz/l) (10)

where we have assumed the scattering element to be a con-
ductor of length l centered at the origin. Thus, the lowest
order mode corresponds to an oscillating current distribution
of wavelength λ = 2l. This lowest order mode gives rise to a
radiation pattern equivalent to a dipole antenna with a current
source at the center of the dipole. In effect, this mode divides
the scattering elements in Fig. 1 into two segments. The next
two higher order modes are constructed by dividing each half
of the scattering element into two more segments. These modes
are written as

I1,2(z) = cos [2π(z ∓ l/4)/l] . (11)

Physically, these modes correspond to the current distributions
of wavelength λ = l centered at ±l/4. Thus, the construction
of the first three current modes naturally divides the scattering
elements into four segments as indicated by the horizontal
lines in Fig. 1. The solution of the problem is then obtained
by solving a matrix problem to determine the coefficients of
the various modes in the expansion of the currents. For the
frequencies considered in this paper, only the lowest order
mode was required, making the calculations extremely fast.

We now turn to a discussion of the scattering properties of a
partially conducting plasma element.

A. Scattering From a Partially Conducting Cylinder

In order to calculate the reflection from an array of plasma
elements, we make the physically reasonable assumption that
(to first order) the induced current distribution in a partially
conducting plasma differs from that of a perfectly conducting
scattering element only to the extent that the amplitude is dif-
ferent. In the limit of high conductivity, the current distribution
is the same as for a perfect conductor, and in the limit of zero
conductivity, the current amplitude is zero.

The scattered electric field is directly proportional to the in-
duced current on the scattering element. In turn, the reflectivity
is thus directly proportional to the square of the induced current
in the scattering element. Thus, to find the reflectivity of the
plasma array, we determine the functional dependence of the
induced squared current versus the electromagnetic properties
of the plasma and scale the reflectivity obtained for the perfectly
conducting case accordingly.

In order to obtain the scaling function for the squared current,
we consider the following model problem. We solve the prob-
lem of scattering from an infinitely extended dielectric cylinder
possessing the same dielectric properties as a partially ionized
collisionless plasma. We thus assume the dielectric function for
the plasma to take the following form:

ε(ω) = 1 − ν2
p

ν2
(12)

where ν is the frequency of the incident electromagnetic wave
and νp is the plasma frequency defined by

νp =
1
2π

√
4πne2

m
(13)

where n is the density of the ionized electrons, and e and m are
the electron charge and mass, respectively. A good conductor
is characterized by the limit of large plasma frequency in
comparison to the incident frequency. In the limit in which
the plasma frequency vanishes, the plasma elements become
completely transparent.

We now turn to the solution of the problem of scattering from
a partially conducting cylinder. The conductivity and, thus,
the scattering properties of the cylinder are specified by the
single parameter νp. We must solve the wave equation for the
electric field:

∇2E =
1
c2

∂2D

∂2t
(14)

subject to the boundary conditions that the tangential electric
and magnetic fields must be continuous at the cylinder bound-
ary. We consider the scattering resulting from the interaction of
the cylinder with an incident plane wave of a single frequency.
Therefore, we assume all fields to have the harmonic time
dependence:

e−iωt

where ω = 2πν is the angular frequency. We are adopting the
physics convention for the time dependence. Personnel more
familiar with the electrical engineering convention can easily
convert all subsequent equations to that convention by making
the substitution i → −j.

Next, we assume the standard approximation relating the dis-
placement field to the electric field via the dielectric function:

D(ω) = ε(ω)E(ω). (15)

By imposing a cylindrical symmetry, the wave equation takes
the form of Bessel’s equation:

∂2E

∂2ρ
+

1
ρ

∂E

∂ρ
+

1
ρ2

∂2E

∂ϕ2
+ εk2E = 0 (16)

where k = ω/c and (ρ, ϕ) are the cylindrical polar coordi-
nates. The general solution of this equation consists of linear
combinations of products of Bessel functions with complex
exponentials. The total field outside the cylinder consists of the
incident plane wave plus a scattered field of the form:

Eout = eikρ cosϕ +
∞∑

m=−∞
AmHm(kρ)eimϕ (17)

where Am is a coefficient to be determined and Hm(kρ) =
Jm(kρ) + iYm(kρ) is the Hankel function that corresponds to
the outgoing cylindrical scattered waves. The field inside the
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cylinder contains only the Bessel functions of the first kind
since it is required to be finite at the origin:

Ein =
∞∑

m=−∞
BmJm

(
kρ

√
ε
)
eimϕ. (18)

To facilitate the determination of the expansion coefficients Am

and Bm, we write the incident plane wave as an expansion in
Bessel functions [2]:

eikρ cosϕ =
∞∑

m=−∞
imJm(kρ). (19)

To enforce continuity of the electric field at the boundary of the
cylinder, we set

Ein(ρ = a, ϕ) = Eout(ρ = a, ϕ) (20)

where we have assumed the cylinder to have a radius a. The
next boundary condition is obtained by imposing the continu-
ity of the magnetic field. From one of Maxwell’s equations
(Faraday’s law), we obtain

H = −i(1/k)∇× E. (21)

Up to this point, we have tacitly assumed that the electric field
is aligned with the cylinder axis (TM polarization). This is the
only case of interest since the scattering of the TE wave is
minimal. The tangential component of the magnetic field is thus

Hϕ = −i(1/k)
[
−∂Ez

∂ρ

]
. (22)

By imposing the continuity of this field along with the continu-
ity of the electric field, we obtain the following set of equations
that determine the expansion coefficients:

imJm(ka) + AmHm(ka) = Bm

(
ka

√
ε
)

(23)

and

imJ ′
m(ka) + AmH ′

m(ka) = BmJ ′
m

(
ka

√
ε
)√

ε (24)

where the primes on the Bessel and Hankel functions imply a
differentiation with respect to the argument.

These equations are easily solved for the expansion coeffi-
cients:

Am =
−im (

√
εJm(ka)J ′

m(ka
√

ε)−J ′
m(ka)Jm(ka

√
ε))

(
√

εHm(ka)J ′
m(ka

√
ε)−H ′

m(ka)Jm(ka
√

ε))
(25)

and

Bm =
im (Jm(ka)H ′

m(ka)−J ′
m(ka)Hm(ka))

H ′
m(ka)Jm(ka

√
ε)−√

εHm(ka)J ′
m(ka

√
ε)

. (26)

Inspection of these coefficients shows that in the limit ε → 1
(i.e., zero plasma frequency), we obtain Am → 0 and Bm →
im. Thus, in this limit, the scattered field vanishes and the
field inside the cylinder simply becomes the incident field as
expected.

The opposite limit of a perfectly conducting cylinder is also
established fairly easily, but requires somewhat more care.
Consider first the field inside the cylinder, which must vanish in
the perfectly conducting limit. A typical term in the expansion
of the electric field inside the cylinder is of the form:

BmJm

(
kρ

√
ε
)
.

The perfect conductivity limit corresponds to taking the limit
νp → ∞, at fixed ν. In this limit ε → −ν2

p/ν
2, and thus,

√
ε →

iνp/ν. For large imaginary argument, the Bessel functions
diverge exponentially. Therefore, we can see

BmJm

(
kρ

√
ε
) → O

(
ν

νp

)
→ 0. (27)

Lastly, we must establish that the tangential electric field just
outside the cylinder vanishes in the perfect conductivity limit
as expected. Using the fact that the Bessel functions diverge
exponentially for large imaginary argument gives the following
limit for the scattered wave expansion coefficient:

Am → −imJm(ka)
Hm(ka)

. (28)

Thus, a typical term in the expansion for the scattered wave,
evaluated just outside the cylinder, has the following limit:

AmHm(ka) → −imJm(ka) (29)

which exactly cancels the corresponding term in the expansion
of the incident plane wave.

B. Scaling Function

We now wish to use the results from the analysis of the
scattering from a partially conducting cylinder to obtain a
reasonable approximation to the scattering from a partially
conducting plasma FSS array based on the computed results
for a perfectly conducting array.

We proceed based on the following observations/
assumptions. 1) The reflectivity of the plasma FSS array
is determined entirely in terms of the scattered field in contrast
to the transmitted field, which depends on both the incident
and scattered fields. 2) The shape of the current modes on the
partially conducting (plasma) FSS array is the same as for the
perfectly conducting array. 3) The only difference between
the partially conducting and perfectly conducting arrays is the
amplitude of the current modes.

We therefore conclude that the reflectivity of the plasma FSS
can be determined from that of the perfectly conducting array
by scaling the reflectivity of the perfectly conducting array by
some appropriately chosen scaling function. This conclusion
follows from the fact that the reflectivity is directly proportional
to the squared amplitude of the current distribution on the
scattering elements.

We obtain the scaling function by making the following
approximation. We assume that the amplitude of the current
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Fig. 2. Scaling function versus plasma frequency for several values of the
incident frequency. This function was obtained from the solution of the problem
of scattering from a partially conducting infinitely long cylinder as discussed in
the text.

on a finite scattering segment in an FSS array scales with the
plasma frequency in the same way as that for the isolated
infinitely long cylinder.

We define the scaling function as

S(ν, νp) = 1.0 − |Eout|2 (30)

where Eout is the total tangential electric field evaluated just
outside of the cylinder. Clearly, from the results of the previous
section, the scaling function takes on the values:

0.0 ≤ S(ν, νp) ≤ 1.0 (31)

for fixed incident frequency ν, as the plasma frequency takes on
the values:

0.0 ≤ νp ≤ ∞. (32)

This function is plotted versus νp for several values of the
incident frequency in Fig. 2. This figure shows the plot of the
scaling function versus plasma frequency for several values of
the incident frequency. This function was obtained from the so-
lution of the problem of scattering from a partially conducting
infinitely long cylinder as discussed in the text.

IV. RESULTS

We now present the results for two cases: 1) an array de-
signed to have a well-defined reflection resonance near 1 GHz
(a band stop filter) and 2) an array designed to operate as a good
reflector for similar frequencies.

A. Switchable Band Stop Filter

The first array is shown in Fig. 1. Each scattering element is
assumed to be 15 cm in length and 1 cm in diameter. The verti-
cal separation is taken to be 18 cm, while the lateral separation

Fig. 3. Calculated reflectivity of a dipole plasma FSS array for several
values of the plasma frequency. The results for the perfectly conducting case
were obtained using the periodic moment method. Results for the partially
conducting plasma FSS were obtained by scaling the perfectly conducting
results using the scaling function in Fig. 2.

is taken to be 10 cm. The results for the perfectly conducting
case along with those for several values of the plasma frequency
are presented in Fig. 3. A well-defined reflectivity resonance
exists at 1 GHz. This result indicates that an appreciable reflec-
tion occurs only for plasma frequencies above 2.5 GHz. The
results in Fig. 3 illustrate the essence of the plasma FSS: A
highly reflective band stop filter can be achieved, which can be
switched on and off simply by controlling the properties of the
plasma.

Fig. 3 shows the calculated reflectivity of a dipole plasma
FSS array for several values of the plasma frequency. The re-
sults for the perfectly conducting case were obtained using the
periodic moment method. Results for the partially conducting
plasma FSS were obtained by scaling the perfectly conducting
results using the scaling function in Fig. 2.

B. Switchable Reflector

Next, we consider a structure designed to be a switchable
reflector. By placing the scattering elements close together, we
obtain a structure that acts as a good reflector for sufficiently
high frequencies. Such a structure is shown in Fig. 4. The
length, diameter, and the vertical and lateral spacings are 10, 1,
11, and 2 cm, respectively.

The calculated reflectivity for the perfectly conducting
case as well as for several values of the plasma frequency
is presented in Fig. 5. For frequencies between 1.8 and
2.2 GHz, the structure operates as a switchable reflector. In
other words, by changing the plasma frequency from low to



412 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 35, NO. 2, APRIL 2007

Fig. 4. Illustration of a switchable reflector. The scattering elements are
chosen to be 10 cm in length and 1 cm in diameter. The vertical spacing is
11 cm, and the horizontal spacing is 2 cm.

Fig. 5. Reflectivity for switchable plasma reflector illustrated in Fig. 4. For
frequencies between 1.8 and 2.2 GHz, the structure operates as a good reflector
for sufficiently high values of the plasma frequency.

high values, the reflector goes from perfectly transmitting to
highly reflecting.

C. Experimental Plasma FSS Work

Metal FSSs were built (Fig. 6). Experimental work on plasma
FSS (Fig. 7) began by letting the tubes spaced within a wave-
length apart be pulsed and letting them decay to observe the
filtering characteristics with plasma density (see Figs. 8
and 13). Then, the plasma FSSs were built (Figs. 8, 10–12).
The tubes are activated by wire sections connected to the end

Fig. 6. Foil-on-cardboard filter with a passband at 960 MHz.

Fig. 7. In general, the plasma FSS will be an array of FSS elements with
plasma (blue) embedded in a dielectric (gray).

Fig. 8. Is a photograph of the lab setup showing the built plasma dipole FSS
with the horn receiver antenna.

of the light tubes. We do not have a scattering from these wires
because the electric field is perpendicular. The noise was not
particularly worse for our system, and it is a few decibels above
the metal antenna. However, when the system was deenergized,
the reflected signal dropped by 20 dB. In other words, the
reflected signal dropped by over a factor of 100 [3]. The
experimental plot in Fig. 9 is compared well with the theoretical
plot in Fig. 11. Differences are due mainly that the theoretical
plot was an infinite array and the experimental plot was finite.
The peak resonance in the theoretical and experimental plots
was very close, and the subpeaks in the experimental plot are
due to the finite size of the array.
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Fig. 9. Tubes are 10.16- and 12.7-cm long, metal ends included. They are
5.08 cm apart horizontally. One inch apart vertically. The first peak corresponds
to a frequency resonance. Here, we are talking about the attenuation of the
transmitted signal.

Fig. 10. Plasma FSS turned on.

Fig. 11. Theoretical and experimental plots superimposed. The same dimen-
sions used here for theoretical plot as in the experimental prototype in Fig. 7,
except that the theoretical array is infinite and the experimental array is finite.
Here, we are talking about the attenuation of the transmitted signal.

Fig. 12. Shows the plasma dipole FSS.

Fig. 13. In the photograph, run 4, the transmitting antenna was emitting at
0.9 GHz. There was a cutoff (reflection) initially, but as the plasma decayed,
we see a transmission through the plasma FSS.

Since the horizontal control wires in Fig. 12 are horizontal,
no induced voltage will be present in them. However, the
element current can continue right up to the control wires
and turn 90◦, producing very strong currents on these wires
unless they are stopped by a choke. We will probably get a
sharper resonance if the currents on the control wires were
suppressed. We will use a choke in our next experiments to see
its effect for our future paper. However, probably, we do not
have the scattering from the wires because the electric field is
perpendicular, and the tubes all have the same induced voltage
for plane wave perpendicular.

V. CONCLUSION

A theory of plasma FSSs has been presented, and two struc-
tures have been analyzed. The theory is based on the physically
reasonable assumption that the current modes induced in the
plasma scattering elements have the same form, but different
amplitude from those for a perfect conductor. The reflectivity
of the structure is directly proportional to the squared amplitude
of the current distribution induced in the scattering elements by
the incident radiation. Based on this observation, we conclude
that the reflectivity of a plasma FSS structure can be obtained
from that for a perfectly conducting structure by scaling the
reflectivity with an appropriately chosen scaling function.
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Fig. 14. This photograph demonstrates the transmitting antenna emitting at
4 GHz, with an oscilloscope scale of 0.1 ms/cm. In this case, the electromag-
netic waves go through the plasma FSS as expected.

Fig. 15. Putting in the passband between transmitter and receiver removes the
second and higher harmonics. (2 dB per square).

The scaling function was defined based on the results of the
exactly solvable model of scattering from an infinitely long
partially conducting cylinder. The approximation was made that
the scaling of the current amplitude versus plasma frequency
in the plasma FSS array should be the same as for an isolated
infinitely long partially conducting cylinder.

The reflectivity for a perfectly conducting FSS array, ob-
tained by the periodic moment method, was then scaled to
obtain the reflectivity of the plasma FSS array versus plasma
frequency. Two cases were considered: 1) a switchable band-
stop filter and 2) a switchable reflector. The results of these
calculations support the notion that the switchable FSS filtering
behavior can be obtained with the use of the plasma FSS.

Experimental work on plasma FSS began by letting the
tubes spaced within a wavelength apart be pulsed and letting
them decay to observe the filtering characteristics with the
plasma density (see Figs. 13 and 15). Metal FSSs were built
(Fig. 6). Then, plasma FSSs were built (Figs. 8, 10–12). The
experimental plot in Fig. 9 is compared well with the theoretical
(together experimental) plot in Fig. 11.

The superposition of the experimental and theoretical works
given in Fig. 11 shows a good agreement. Differences are due
mainly that the theoretical plot was an infinite array and the ex-
perimental plot was finite. The peak resonance in the theoretical

and experimental plots was very close, and the subpeaks in the
experimental plot are due to the finite size of the array.

As can be seen by the photographs, changing the transmit-
ting frequency also causes the FSS to reflect and conduct. At
0.9 GHz, we see an initial reflection, but as the plasma deion-
izes, the signal penetrates the FSS. Also, when the frequency is
raised to 4 GHz (Fig. 14), the emissions go through the FSS as
predicted. Some of these plasma antenna applications have been
patented [4], [5].
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